Wireless Energy Transfer and Wireless Communication for In-body Sensors

نویسندگان

  • Sandra Yuste Muñoz
  • Kimmo Kansanen
چکیده

Wireless communications in itself is a never-ending growing technology. One growing field of research relates to the implantable biomedical devices which have found applications in a wide range of areas. Some implants use traditional batteries to supply power for the electronic circuits within the sensor. However, any battery has a limited energy storage and life span, and percutaneous links are susceptible to infection and reliability problems. Wireless power transfer (WPT) offer the opportunity to provide power for longer periods without the risk of infection from a percutaneous lead. Inductive power transfer is the most common method of wireless power transfer to the implantable sensors which consist of a primary external power circuit and a secondary implantable power pick-up unit. A common characteristic associated with biomedical applications is loose coupling between the primary and secondary coils. Compensation for loose coupling can be achieved through the use of resonance circuits which enables the voltage or current at the secondary to boost up to useful levels even in the presence of low coupling coefficients. The ability to achieve power transfer is dependent on the match between the resonant frequency of the primary with the resonant frequency of the secondary. Resonance-based wireless power delivery is investigated for improved energy transfer efficiency and reduced dependence on the distance between the primary and secondary coils. However, in practice the resonant frequency of the secondary pick-up circuit is often mismatched with the operating frequency of the primary because of the variations in load, coupling and other circuit parameters. When mismatching occurs, the voltage magnitude control approach can only respond by operating at a high magnitude to attempt to maintain the power flow to the load. One of the main constraints of the system is to achieve the minimum power required by the application by still keeping the implant size small enough for the living subject’s body. This report also focuses on the design issues associated with the wireless exchange of data between the implant and the external world and also with the telemetry of power through the inductive link.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach

Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...

متن کامل

DTMP: Energy Consumption Reduction in Body Area Networks Using a Dynamic Traffic Management Protocol

Advances in medical sciences with other fields of science and technology is closely casual profound mutations in different branches of science and methods for providing medical services affect the lives of its descriptor. Wireless Body Area Network (WBAN) represents such a leap. Those networks excite new branches in the world of telemedicine. Small wireless sensors, to be quite precise and calc...

متن کامل

A New Method for Clustering Wireless Sensor Networks to Improve the Energy Consumption

Clustering is an effective approach for managing nodes in Wireless Sensor Network (WSN). A new method of clustering mechanism with using Binary Gravitational Search Algorithm (BGSA) in WSN, is proposed in this paper to improve the energy consumption of the sensor nodes. Reducing the energy consumption of sensors in WSNs is the objective of this paper that is through selecting the sub optimum se...

متن کامل

Representing a Model for Improving Connectivity and Power Dissipation in Wireless Networks Using Mobile Sensors

Wireless sensor networks are often located in areas where access to them is difficult or dangerous. Today, in wireless sensor networks, cluster-based routing protocols by dividing sensor nodes into distinct clusters and selecting local head-clusters to combine and send information of each cluster to the base station and balanced energy consumption by network nodes, get the best performance ...

متن کامل

STCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach

Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...

متن کامل

Energy-Saving in Wireless Sensor Networks Based on Optimization Sink Movement Control

A sensor network is made up of a large number of sensors with limited energy. Sensors collect environmental data then send them to the sink. Energy efficiency and thereby increasing the lifetime of sensor networks is important. Direct transfer of the data from each node to the central station will increase energy consumption. Previous research has shown that the organization of nodes in cluster...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016